Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1294873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074116

RESUMO

Introduction: Methotrexate (MTX) is one of the most important drugs included in the first-line protocols to treat high-grade osteosarcoma (HGOS). Although several polymorphisms have been reported to be associated with drug response or MTX-related toxicity in pharmacogenetic studies, their role in the development of MTX resistance in HGOS is still unclear. Methods: Therefore, in this study, 22 single nucleotide polymorphisms (SNPs) in 4 genes of the folate metabolism, 7 MTX transporter genes, and 2 SNPs of the tumor protein p53 (TP53) gene were investigated using a custom multimodal-targeted next-generation sequencing (mmNGS) approach in 8 MTX-resistant and 12 MTX-sensitive human HGOS cell lines. The panel was validated by TaqMan genotyping assays. Results: High instability of TP53 rs1642785 was observed in all U-2OS/MTX variants. Allele changes of the solute carrier family 19 member 1/replication factor C subunit 1 (SLC19A1, previously known as RFC1) and rs1051266 were identified in all Saos-2/MTX-resistant variants in both DNA- and RNA- derived libraries compared to the parental Saos-2 cell line. Allele changes of methylenetetrahydrofolate reductase (MTHFR) rs1801133 were identified only in the RNA-derived libraries of the two U2OS variants with the highest MTX resistance level. Significantly upregulated gene expression associated with the development of MTX resistance was revealed for dihydrofolate reductase (DHFR) whereas SLC19A1 was downregulated. In addition, a fusion transcript of DHFR (ex4) and MutS Homolog 3 (MSH3) (ex9) was identified in the RNA libraries derived from the two U-2OS variants with the highest MTX resistance level. Conclusion: This innovative mmNGS approach enabled the simultaneous exploration of SNPs at DNA and RNA levels in human HGOS cell lines, providing evidence of the functional involvement of allele changes associated with the development of MTX resistance.

2.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233089

RESUMO

Cisplatin (CDDP) is a drug for high-grade osteosarcoma (HGOS) treatment. Several germline pharmacogenetic studies have revealed associations between single nucleotide polymorphisms (SNPs) and CDDP-based therapy response or CDDP-related toxicity in patients with HGOS. Whether these variants could play a biological role in HGOS cells has not been studied so far. The aim of this study was to explore 28 SNPs of 14 genes in 6 CDDP-resistant and 12 drug-sensitive human HGOS cell lines. An innovative multimodal targeted next generation sequencing (mmNGS) approach with custom primers designed for the most commonly reported SNPs of genes belonging to DNA repair, CDDP transport or detoxification, or associated with CDPP-related toxicity was applied. The mmNGS approach was validated by TaqMan genotyping assays and emerged to be an innovative, reliable tool to detect genetic polymorphisms at both the DNA and RNA level. Allele changes in three SNPs (ERCC2 rs13181 and rs1799793, ERCC1 rs11615) were identified on both DNA and RNA derived libraries in association with CDDP resistance. A change of the GSTP1 rs1695 polymorphism from AA to AG genotype was observed in the RNA of all six CDDP-resistant variants. These SNPs emerged to be causally associated with CDDP resistance in HGOS cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Farmacogenética , Polimorfismo de Nucleotídeo Único , RNA , Proteína Grupo D do Xeroderma Pigmentoso/genética
3.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629971

RESUMO

High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.


Assuntos
Neoplasias Ósseas/genética , Osteossarcoma/genética , Animais , Antineoplásicos/efeitos adversos , Neoplasias Ósseas/tratamento farmacológico , Marcadores Genéticos , Humanos , Osteossarcoma/tratamento farmacológico , Farmacogenética , Polimorfismo Genético , Sarcoma Experimental , Pesquisa Translacional Biomédica
4.
Front Oncol ; 10: 331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211337

RESUMO

Treatment of high-grade osteosarcoma, the most common malignant tumor of bone, is largely based on administration of cisplatin and other DNA damaging drugs. Altered DNA repair mechanisms may thus significantly impact on either response or resistance to chemotherapy. In this study, by using a panel of human osteosarcoma cell lines, either sensitive or resistant to cisplatin, we assessed the value as candidate therapeutic targets of DNA repair-related factors belonging to the nucleotide excision repair (NER) or base excision repair (BER) pathways, as well as of a group of 18 kinases, which expression was higher in cisplatin-resistant variants compared to their parental cell lines and may be indirectly involved in DNA repair. The causal involvement of these factors in cisplatin resistance of human osteosarcoma cells was validated through gene silencing approaches and in vitro reversal of CDDP resistance. This approach highlighted a subgroup of genes, which value as promising candidate therapeutic targets was further confirmed by protein expression analyses. The in vitro activity of 15 inhibitor drugs against either these genes or their pathways was then analyzed, in order to identify the most active ones in terms of inherent activity and ability to overcome cisplatin resistance. NSC130813 (NERI02; F06) and triptolide, both targeting NER factors, proved to be the two most active agents, without evidence of cross-resistance with cisplatin. Combined in vitro treatments showed that NSC130813 and triptolide, when administered together with cisplatin, were able to improve its efficacy in both drug-sensitive and resistant osteosarcoma cells. This evidence may indicate an interesting therapeutic future option for treatment of osteosarcoma patients who present reduced responsiveness to cisplatin, even if possible effects of additive collateral toxicities must be carefully considered. Moreover, our study also showed that targeting protein kinases belonging to the mitogen-activated protein kinase (MAPK) or fibroblast growth factor receptor (FGFR) pathways might indicate new promising therapeutic perspectives in osteosarcoma, demanding for additional investigation.

5.
Expert Opin Emerg Drugs ; 24(3): 153-171, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31401903

RESUMO

Introduction: Current treatment of conventional and non-conventional high-grade osteosarcoma (HGOS) is based on the surgical removal of primary tumor and, when possible, of metastases and local reccurrence, together with systemic pre- and post-operative chemotherapy with drugs that have been used since decades. Areas covered: This review is intended to summarize the new agents and therapeutic strategies that are under clinical evaluation in HGOS, with the aim to increase the cure probability of this highly malignant bone tumor, which has not significantly improved during the last 30-40 years. The list of drugs, compounds and treatment modalities presented and discussed here has been generated by considering only those that are included in presently ongoing and recruiting clinical trials, or which have been completed in the last 2 years with reported results, on the basis of the information obtained from different and continuously updated databases. Expert opinion: Despite HGOS is a rare tumor, several clinical trials are presently evaluating different treatment strategies, which may hopefully positively impact on the outcome of patients who experience unfavorable prognosis when treated with conventional therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Ensaios Clínicos como Assunto , Desenho de Fármacos , Humanos
6.
Expert Opin Drug Metab Toxicol ; 15(4): 299-311, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30822170

RESUMO

INTRODUCTION: DNA damaging drugs are widely used for the chemotherapeutic treatment of high-grade osteosarcoma (HGOS). In HGOS patients, several germline polymorphisms have been reported to impact on the development of adverse toxic events related to DNA damaging drugs treatment. Some of these polymorphisms, when present in tumor cells, may also influence treatment response and prognosis of HGOS patients. Area covered: In this review, the authors have focused on pharmacogenetic markers (mainly germline polymorphisms) described in patients with HGOS, which have proved or indicated to be related to the susceptibility to adverse toxic reactions and/or to influence response to DNA damaging drugs. The concordant and discordant results reported in different studies have also been discussed. Expert opinion: Response and toxicity predisposition to DNA damaging drugs are influenced by genes encoding proteins involved in their uptake, efflux, activation, inactivation, and in DNA repair, activity of which may vary according to specific gene variations. In HGOS, there is a substantial medical need for biomarkers predictive for individual response and toxicity predisposition to DNA-targeting drugs, which may be used to tailor therapy in order to decrease the occurrence of adverse side effects and increase treatment efficacy and safety.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Farmacogenética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Humanos , Gradação de Tumores , Osteossarcoma/genética , Osteossarcoma/patologia , Polimorfismo Genético
7.
Expert Rev Mol Diagn ; 18(11): 947-961, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30324828

RESUMO

INTRODUCTION: Genetic characterization of osteosarcoma has evolved during the last decade, thanks to the integrated application of conventional and new candidate-driven and genome-wide technologies. Areas covered: This review provides an overview of the state of art in genetic testing applied to osteosarcoma, with particular regard to novel candidate genetic biomarkers that can be analyzed in tumor tissue and blood samples, which might be used to predict toxicity and prognosis, detect disease relapse, and improve patients' selection criteria for tailoring treatment. Expert commentary: Genetic testing based on modern technologies is expected to indicate new osteosarcoma-related prognostic markers and driver genes, which may highlight novel therapeutic targets and patients stratification biomarkers. The definition of tailored or targeted treatment approaches may improve outcome of patients with localized tumors and, even more, of those with metastatic disease, for whom progress in cure probability is highly warranted.


Assuntos
Neoplasias Ósseas/genética , Testes Genéticos/métodos , Osteossarcoma/genética , Neoplasias Ósseas/patologia , Epigênese Genética , Testes Genéticos/normas , Mutação em Linhagem Germinativa , Humanos , Osteossarcoma/patologia , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...